
NASA / GODDARD SPACE FLIGHT CENTER
Advanced Architectures and Automation Branch

NGST Scientist’s Expert Assistant
(SEA) Design Document

Release 1

February, 1998

Goddard Space Flight Center
Greenbelt, Maryland

National Aeronautics and
Space Administration

NGST SEA Design Document

ii

NGST Scientist’s Expert Assistant (SEA) Design Document

Release 1

February 1998

Prepared by:

Jeremy E. Jones Date
Advanced Architectures and Automation Branch

Approved by:

Sylvia Sheppard Date
Advanced Architectures and Automation Branch

Approved by:

Keith Kalinowski Date
NGST

Goddard Space Flight Center
Greenbelt, Maryland

NGST SEA Design Document

iii

TABLE OF CONTENTS

1 INTRODUCTION 1

1.1 Purpose 1

1.2 Audience 1

1.3 Applicable Documents 1

1.4 Document Organization 1

2 OVERVIEW 1

3 REQUIREMENTS SUMMARY 2

3.1 Functional Requirements 2
3.1.1 Overview 2
3.1.2 Proposal 2
3.1.3 User Interface 2

3.2 Hardware requirements 3

3.3 Software requirements 3

4 CONCEPTUAL MODEL 4

4.1 High Level 4

4.2 Proposal Data Model 4
4.2.1 Proposal 4
4.2.2 Visit 5
4.2.3 Exposure 5
4.2.4 Instrument 5
4.2.5 Detector 6
4.2.6 Filter 6
4.2.7 Astronomical Object 6
4.2.8 Morphology 6
4.2.9 Spectrum 6
4.2.10 Normalization 6
4.2.11 Observatory Parameters 6
4.2.12 Aperture 7
4.2.13 Wavelength 7

4.3 Use Cases 7

5 DESIGN MODEL 8

NGST SEA Design Document

iv

5.1 Diagram Notation 8

5.2 User Interface 9
5.2.1 Interview Mode 9
5.2.2 Browser Mode 10
5.2.3 Concepts 11
5.2.4 Exposure Time Calculator 12
5.2.5 Visual Target Tuner 13

5.3 Architecture Model 15
5.3.1 High Level Overview 15
5.3.2 Science Objects 16
5.3.3 Expert System Objects 16
5.3.4 User Interface Framework 17
5.3.5 User Interface Modules 18

5.4 Design Class Model 21
5.4.1 Science Package 21
5.4.2 User Interface Framework 34
5.4.3 Visual Target Tuner 39

5.5 Class Interaction Diagrams 43
5.5.1 Diagram 1: Starting a SEA browser window 44
5.5.2 Diagram 2: Opening an existing proposal 44
5.5.3 Diagram 3: Selecting an exposure time in the proposal tree 45
5.5.4 Diagram 4: Setting a new value for the exposure time 45
5.5.5 Diagram 5: Saving the proposal to disk 46

6 JAVA IMPLEMENTATION NOTES 47

6.1 Development Tools 47
6.1.1 Integrated Development Tool: Visual Café 47
6.1.2 Configuration Management: Visual SourceSafe 47
6.1.3 Expert System Engine: Advisor/J 47

6.2 Additions/Exemptions to the Java Style Guide 47
6.2.1 Property names 47

6.3 Security Management 47
6.3.1 User security 47
6.3.2 Applet security 48

6.4 Deployment notes/comments 48

6.5 Location of implementation files 48

NGST SEA Design Document

1

1 Introduction

1.1 Purpose
This document describes the design for Release 1 of the NGST Scientist’s Expert Assistant
(SEA). It contains a non-technical analysis of the underlying astronomical concepts, as well as a
technical description of the software design model. This document was written for the Advanced
Architectures and Automation Branch of the NASA Goddard Space Flight Center.

1.2 Audience
The design portions of this document were written with the assumption that the reader is familiar
with object-oriented software engineering concepts. Familiarity with the Java programming
language was also assumed. The sections related to the conceptual model, however, were written
for a much broader audience and do not require software engineering knowledge.

1.3 Applicable Documents

1. NGST Scientist’s Expert Assistant (SEA) Phase I Summary, October 1997.

2. NGST Scientist’s Expert Assistant (SEA) Requirements Document, February 1998.

1.4 Document Organization
This document is organized into four main sections. Section 3 summarizes the high-level
requirements that drove the design. Section 4 describes our analysis of the underlying
astronomical concepts. Section 5 contains the detailed design model. Finally, section 6 contains
Java-specific implementation details.

2 Overview
The SEA is a research effort to explore the feasibility of developing Java-based Visual Tools, and
a Rule-Based Expert System to assist NGST scientists. It targets the Phase II proposal process,
for which proposing scientists are currently required to provide extensive spacecraft and
instrument parameters to specify their requested observation. The goal of the SEA is to
communicate with the scientist in scientific language and guide them through the proposal
specification process.

Object-oriented techniques have been applied throughout the SEA design. Exclusive use of the
Java language helps to promote these techniques. In addition, the Unified Modeling Language
(UML) has been used whenever possible to enforce these techniques and to clarify the design.
An iterative process of requirements gathering, analysis, and design has been applied.

NGST SEA Design Document

2

3 Requirements Summary
This section summarizes the high-level requirements for the Scientist’s Expert Assistant. See the
SEA Requirements Document for a more detailed description of the requirements.

3.1 Functional Requirements

3.1.1 Overview
The SEA will provide the ability to construct Phase II proposals for HST’s Advanced Camera for
Surveys (ACS), and ultimately the Next Generation Space Telescope (NGST). It will allow less-
experienced users access to the proposal through an easy-to-use interview process while allowing
experienced users full control in accessing the entire proposal. The SEA will use expert system
technology to insulate the user from instrument knowledge as much as possible. The user will be
encouraged to express their proposal in terms of the science that they wish to achieve, rather than
the instrument parameters necessary to achieve that science. Finally, the SEA must be easily
available over the World Wide Web, and must not require any client software other than an up-to-
date Web browser.

3.1.2 Proposal
The user will be able to create a new proposal, load an existing proposal from a file, save a
proposal to a file, and submit a completed proposal. The user will also be able to output their
proposal to a printer or to a text file. A proposal may include multiple exposures which may be
organized into multiple visits. Multiple proposals may be open at the same time, and the user will
be able to copy items from one proposal to another.

3.1.3 User Interface
The SEA will contain two main user interfaces: an interview interface for less-experienced users,
and a browser interface for experienced users. These interfaces will be completely separate from
the proposal that they are modifying. Indeed, the user will be able to switch between them at any
time while working on the same proposal. The browser user interface will allow the user
maximum control over the proposal. The user may jump to any area of the proposal at any time.
Multiple editors for different proposal areas may be open at once. When the user makes a change
to any area of the proposal, it will automatically be propagated to the rest of the proposal.

The user interface will employ visual techniques to communicate information wherever possible.
The Exposure Time Calculator, for example, will contain graphs that the user may manipulate in
real time. Also, the Visual Target Tuner will present an image of the area surrounding the target,
allowing the user to specify position and orientation visually by selecting and dragging icons in
the image.

Help will be built into the SEA. The user should have easy access to online documents related to
the proposal process and the operation of the SEA. In addition, the tool should allow the user to
receive help on any individual component in the tool by selecting that component. Help
documents will be HTML-based.

NGST SEA Design Document

3

3.2 Hardware requirements
Because the SEA uses advanced software technology, it requires a relatively recent machine to
execute smoothly. For the Windows 95/NT environment, at least a 166 MHz Pentium PC with 32
MB RAM is required. For the Solaris environment, at least a 166 MHz SparcStation with 32 MB
RAM is required. For the Macintosh environment, at least a 150 MHz PowerPC machine with 32
MB RAM is required.

3.3 Software requirements
Because the SEA is written in Java, it should run on any platform that provides a compatible
implementation of the Java virtual machine. If the user opts to run the SEA as an applet, the user
must have a Web browser that supports version 1.1.4 or later of the Java Development Kit (JDK).
The SEA will initially support Netscape Navigator from Netscape Communications and HotJava
from Sun Microsystems. If the user runs the SEA as a local application, the user must have
installed a Java virtual machine that supports version 1.1.4 or later of the JDK.

NGST SEA Design Document

4

4 Conceptual Model
This chapter will focus on describing the various "concepts" that we believed are involved in the SEA in
non-technical analytical terms. The conceptual model is presented in a top-down fashion with a high-level
look at the model and the focusing in on the more detailed pieces.

4.1 High Level
At the highest level, the SEA will have three main areas:

The Proposal contains all the information for a single proposal, this includes such items as specifications
for one or more exposures, information on grouping and ordering of the exposures, knowledge for
validating the proposal.
The Interfaces domain contains all the various means for editing a proposal. This will include the various
Graphical User Interfaces (GUI) whether they be interview-style or browser-style.
The External domain will include concepts such as managing multiple proposals and transmitting proposals
to other sites.

4.2 Proposal Data Model
This group of concepts focus on the definition of a proposal and the various astronomical concepts
contained in a proposal.

4.2.1 Proposal
The Proposal contains all the information for executing a Phase II observing program. This includes
descriptive information about the proposal such as title, authors, and abstract and a series of exposures that
are grouped into Visits. It also includes the knowledge for validating the current proposal data and for
evaluating (and possibly rejecting) changes.
The "core" of the proposal is a list of one or more Visits.

External / Multiple
Proposal

Management

Interfaces

Proposal

NGST SEA Design Document

5

4.2.2 Visit
In the simple form, a Visit is collection of related exposures that share a common primary target. While the
individual exposures may small offsets, the telescope should be able to execute all of the exposures in a
single visit using the same target "locks" (for HST, this means using the same set of guide stars). In the
initial releases of SEA tools, the Visit will remain very simple. As the "Visit Planner" gets designed and
developed further, the Visit will gain additional knowledge about ordering and validating its group of
exposures.

4.2.3 Exposure
An Exposure combines the information necessary to specify a single image. This includes configuration
specifications for the instrument, information about the target to be observed, other specifications about the
observatory and observing conditions, and the length of time of the exposure. In addition the exposure
should be able to calculate various predicted photon counts and their sources that are accumulated in the
image. The target for an exposure should be the same as the parent target for the Visit, or an allowed offset
from that target that means the constraints of remaining within the visit

4.2.4 Instrument
An Instrument contains the specifications for a single instrument involved in a single exposure. It includes
identifying the selected detector, filter, and additional instrument configuration parameters. It will also
include characteristics of an instrument including such things as a list of the detectors it contains, the filters,
the valid assignments of filters to detectors.

Proposal
descriptive info such
as principal scientist,

contact scientist,
abstract, title, etc,
and a list of all the
visits it contains

Spectrum
intensity of an object's emissions over

wavelengths. Can be formula, or list of values
and wavelengths

Normalization
adjusts brightness at a specific

wavelength

Morphology
shape and size of an object; for
extended objects may include

intensity variation across the object

has one

has one

has one

Instrument
housing framework for one or more

detectors, a set of filters, and criteria for
what filters may be used on what detectors,

other data common to all detectors of an
instrument

Target Offset
offset of Target within the constraints of

movement within a Visit

Detector
device that

records
photoelectric

counts to make
images

Filter
filters light to a

detector based on
shape or

wavelength

one is
 "active"

one is
 "active"

has one
or more

has one
or more

has one

has one

for a specified amount of time, or to achieve
Single image of Target using an instrument

or more

Exposure

a desired SNR.

Visit
set of exposures

grouped by
common primary

target

Observatory
info common to all

instruments in a single
observatory: mirror size,
atmospheric conditions

Target
Astronomical target: includes location, type,

info about emission characteristics

has one
or more

has one

has one

has one

NGST SEA Design Document

6

4.2.5 Detector
A Detector contains information specific to a single detector. This includes things such as width and height
in pixels, the size of a pixel, and information about the detector's sensitivity and its bright limits.

4.2.6 Filter
The Filter contains information and knowledge specific to a particular filter.

4.2.7 Astronomical Object
An Astronomical Object is an entity in space that is the target of an observer. An astronomical object has
information such as a location, and distance and velocity relative to the earth, a shape and size, a spectral
model, and normalization factors to adjust the spectral model's brightness and redshift to the specific object.
For the SEA one the key issues is how intensely an object emits light in different places at different
wavelengths. For defining this, an object has:
• A Morphology which defines its shape and size and its intensity a different points within the object;
• a Spectrum which defines how the object radiates at different wavelengths and possible different

places,
• and a Normalization which adjusts the spectral model for brightness and at user specified wavelength.
• a distance or redshift value.

All of these combine to determine what actual observed emissions from the astronomical object are likely
to be.

Caveats: the description does not currently provide for an object whose emissions vary over time. Nor does
it accommodate a larger astronomical object that might have an entirely different spectral emission pattern
at different places.

4.2.8 Morphology
An astronomical object has a defined shape or Morphology. This can be as simple as "point source", or a
"flat" circle of a specified diameter. Or it could be more complex as in the case of a galaxy.

4.2.9 Spectrum
Describes an set of emissions across a series of wavelengths. Several standard spectral models exists such
as Power-Law, and Black Body. In addition a Spectrum can be based on a series of measurements made on
a specific object. An object's actual spectrum is modified by its normalization, redshift, and sometimes in
morphology to determine the "observed" spectrum.

4.2.10 Normalization
The Normalization of an spectrum adjusts the spectral model's intensity based on a specified intensity at a
specific wavelength.

4.2.11 Observatory Parameters
The Observatory contains information and knowledge that pertains to an observatory and is common to all
of its instruments. This include things such as primary mirror size and other attributes, atmospheric data.
The Observatory should know how to return information about the primary mirror, and how background
light and noise is affected by the atmosphere or other attributes of the Observatory.
In the case of NGST and HST, zodiacal light (background emissions deflected from the sun) and earth
shine (background emissions related to the earth) are two important parameters.
While this concept needs to be modelled, we do expect that the information contained in the observatory
parameters to be modified very much by a user.

NGST SEA Design Document

7

4.2.12 Aperture
The Aperture defines information about the shape and size of the viewable area of an instrument
configuration (including the detector and filter applied).

4.2.13 Wavelength
Contains a wavelength value and its defined unit of measurement. A wavelength will also know how to
convert its value to other units of measurement.

4.3 Use Cases
The following Extended Use Case Diagram illustrates the cases that comprise the creation of a
proposal. The user is represented by a single actor, the scientist or General Observer (GO). The
actor initiates the “Create Proposal” use case. Each use case represents a specific sequence of
events that occur when the user interacts with the system. If a “<<uses>>” arrow exists from use
case A to use case B, it indicates that A is dependent on and requires B. If an “<<extends>>”
arrow exists from use case A to use case B, it indicates that B may also contain A.

Load Existing Proposal

Create Proposal

<<extends>>

Scientist

Output Proposal

<<extends>>

Submit Proposal

<<extends>>

Supply Proposal Summary Supply # Visits

<<uses>> <<uses>>

Create Each Visit

<<uses>>

Check Validity

<<uses>>

Supply # Exposures Create Each Exposure

Plan the Visit

Order Exposures

<<uses>>

Specify Constraints

<<uses>>

Supply Target Offset Supply Orientation Constraints Supply Exposure TimeSupply Instrument Parameters

Supply Target

<<uses>>
<<uses>>

<<uses>>

<<uses>>

Supply Observatory Parameters

<<uses>>

<<uses>> <<uses>> <<uses>><<uses>>

NGST SEA Design Document

8

5 Design Model
The description of the design model is organized into five sections. The first describes the
notation used in the class model diagrams. The second illustrates the user interface (UI) design
with examples of the main dialogs and descriptions of the underlying UI concepts. The third
section describes the high-level design, emphasizing the breakdown of the SEA into subsystems
and how those subsystems interact. The fourth section explains the inner workings of each
subsystem by describing the classes contained within them. The last section illustrates how these
classes interact with each other.

5.1 Diagram Notation
The following notation is used in the class diagrams throughout this section.

Classes and Interfaces:

Non-abstract class

Abstract class

Interface

Inheritance. Class B inherits from, or extends, Class A.

NGST SEA Design Document

9

Implementation. Class C implements Interface A.

Variables and Methods:
Public or Package Variable
Private Variable
Protected Variable
Public or Package Method
Private Method
Protected Method

5.2 User Interface
One of the main goals in designing the SEA is that it be flexible enough to appeal to users with
varying degrees of experience in writing proposals. The SEA should be the ideal tool for
scientists who have never submitted a proposal before and want to be guided through the process.
Yet the SEA should also be the ideal tool for experienced scientists who know how the proposal
process works and want more flexibility in working with the tool. To that end, the SEA includes
two different modes for working with the proposal.

5.2.1 Interview Mode
The interview mode allows the user to write their proposal through a series of steps. Each step
will ask the user information about the science that they want to achieve. This information will
be fed into the expert system which will determine how the information translates into a proposal.
The user interface for this mode will be a Wizard, a commonly used technique on the Microsoft
Windows platform that asks the user a series of questions and allows the user to step forward or
backward in the list of questions. The user may switch between the interview mode and the
browser mode at any time.

NGST SEA Design Document

10

This is an example of what the interview window might look like. The area on the left would
contain a list of goals with the current goal selected. The area on the right would contain
instructions and questions for the user to answer. In some cases, a simplified version of a
Proposal Browser editor might be used, for example when determining the exposure time. In
most cases, however, the expert system would generate a list of questions represented as entry
fields or choice boxes. The interview window also includes a comments section that contains
notes on the user’s choices and how they affect other goals in the interview.

5.2.2 Browser Mode
The browser mode is intended for users who understand the proposal process and want maximum
capability in editing their proposal. In this mode, the user views the proposal with the Proposal
Browser window. This window resembles the Microsoft Windows Explorer interface, allowing
the user to quickly navigate through the proposal by selecting elements in a tree view of the
proposal.

NGST SEA Design Document

11

On the left, the contents of the proposal are represented as a tree. Please note that in the final
release, the generic folder icons will be replaced with icons that represent specific areas of the
proposal. When the user selects an item in the proposal tree, the editor for that item will appear
on the panel to the right. The user may jump to any area of the proposal at any time. This
technique allows only a single editor to be open at once, similar to a page in a Web browser. To
overcome this limitation, the Proposal Browser also allows the user to open an editor in its own
separate window by double-clicking on the item in the proposal tree, or selecting an “Open in
New Window” option from the menubar. This allows the user to have many different editors
open at once. In this case, all editors are linked to the proposal such that if the user makes a
change in one editor, it is automatically propagated to all other editors.

5.2.3 Concepts
The following are key concepts that have guided the design of the user interface:

5.2.3.1 Automatic change propagation
The SEA design enforces the idea that if the user makes a change in one area of the proposal, that
change is automatically propagated to all other areas of the proposal. If, for example, the user has
both the Exposure Time Calculator and the Target Selector open, and they change the target type
from a Point Source to an Extended Source, the Exposure Time graph would automatically
update to reflect the properties of the new target.

NGST SEA Design Document

12

5.2.3.2 Drag and drop
Drag and drop will be supported wherever possible. The user should be able to, for example, copy a target
object from one exposure to another exposure by dragging it. We are investigating using the Drag and
Drop API in the Java Foundation Classes.

5.2.3.3 Navigation history
The SEA should maintain a history of the user’s navigation decisions, and allow the user to go backwards
and forwards in that history. This would be similar to the history feature found on most Web browsers.
The arrow buttons shown at the top left of the previous images would serve this function.

5.2.3.4 Help
The SEA will have three different kinds of help:

5.2.3.4.1 Global Help
Global help will consist of HTML documentation accessible from the Help menu. This might include a
user’s guide, or reference documentation related to the proposal or instrument.

5.2.3.4.2 ToolTips
The SEA will support ToolTips-style help. This has become a standard feature in most applications, where
a small one-line description of an item is displayed at the cursor if the cursor pauses for a few seconds.

5.2.3.4.3 Context-Sensitive Help
Context-sensitive help allows the user to get help on any user interface item by clicking on a help icon and
then clicking on the item in question. Clicking on the item displays a small window of HTML
documentation related to the item or the contents of the item. This should be very similar to the context-
sensitive help feature found on Windows 95/NT. The question mark icon shown at the top left of the
previous images would initiate the help operation.

5.2.4 Exposure Time Calculator
The Exposure Time Calculator (ETC) generates real-time interactive graphs showing Signal-Noise Ratio
and Source counts across a range of exposure times and wavelengths. The user can manipulate the graphs
by zooming in or out of specific areas. The user can also specify what type of data is displayed in the graph
by selecting a data type from the choice boxes at the graph’s axes. Selecting a point on the plot causes its
data value to be inserted into the corresponding entry field on the bottom of the ETC. Because these fields
display the most important data: exposure time, signal-to-noise ratio, and source counts, they are always
shown. The graph, however, can be replaced with a tabular view of the graph data by selecting the “Data”
tab. Likewise, selecting the “Options” tab replaces the graph with a series of options that allow the user to
tweak the display of the graph. The “Graphs” tab returns to the graph display. The following image shows
the ETC with the “Graphs” tab selected.

NGST SEA Design Document

13

5.2.5 Visual Target Tuner
The Visual Target Tuner (VTT) allows the user to visualize the area surrounding the target and to tune the
target position. The VTT also allows the user to specify constraints for the orientation of the instrument.
These constraints are specified as points or regions to include or exclude from the exposure. The SEA can
then calculate the set of valid orientations given those constraints. The overriding design goal for the VTT
is to create a highly visual and interactive environment for dealing with the position of the target. The user
should be able to easily move around the target area, zoom in or out of the visualization, identify objects
on the visualization, and be able to drag the target to change its position. A future release of the VTT will
allow the user to perform a centroid fit of the target position. This later release will also simulate image
artifacts such as diffraction spikes and CCD bleeding, and will provide the ability to show a model of the
target area as well as a FITS image.

NGST SEA Design Document

14

This sample of an early VTT prototype illustrates the more important user interface concepts. The
visualization is clearly the most important item and thus contains most of the window area. One or more
FITS images of the target area are contained within the visualization, along with a simple crosshair to
indicate the current position of the target. The target position is also shown as a set of coordinates in the
bottom of the window. The user may change the position by dragging the target or changing the values in
the entry fields.

The visualization shows two concentric circles: the inner circle contains the area that will be included
regardless of the orientation, and the outer circle contains the area that may potentially be included.
Orientation constraints are specified by selecting the inclusion or exclusion tool, and then selecting either
an object or region in the visualization. Areas that must be included in the exposure are shown in green.
Areas that must be excluded are shown in red. In the future, the tool will visually indicate the set of
possible orientations, perhaps by shading the areas that will be excluded from the exposure. The user can
also open the Orientation Constraints window to see how their constraints affect the schedulability of their
proposal. They may monitor how the schedulability changes as they alter their inclusion and exclusion
points in real-time.

The upper left corner of the VTT window contains the set of tools that may be used on the visualization. In
addition, certain visualization options may be set using items under the “Options” menu. The “View”
menu provides access to secondary VTT windows. These include:

NGST SEA Design Document

15

• an Orientation Constraints window that shows the inclusion and exclusion points as a
table. This window also displays summary information about the schedulability of the
proposal given the current set of constraints.

• an Image Chooser window that allows the user to specify the FITS image files to be
shown in the visualization. The user may choose from the images retrieved from an
astronomical database, or may specify a local image to use.

• an image tools window that allows the user to manipulate the images contained in the
visualization. Images may be adjusted by changing their brightness, contrast, color table,
or toggling the negative of the image.

5.3 Architecture Model

This section describes the overall architecture and structure of the various classes in the SEA
system. Following a high-level overview, we'll work down through the class hierarchy in greater
detail.

5.3.1 High Level Overview
At a high-level, the classes in the SEA are broken down very similarly to the conceptual layout.
This trend is reflected in the package structure of the objects as they are implemented in the Java
language. The classes are grouped as follows:
• Science Objects: these classes represent the objects in the Proposal data model. The focus of

classes here is on the science and data contain in the data model. Emphatically, user interface
related information is NOT a part of these classes.

• Expert System Objects: this grouping contains classes that provide an interface between the
Science Objects and the Expert System engine. It includes classes that support the
management of the questions and answers for the Interview user interface.

• User Interface Framework: this grouping contains the classes that implement the user
interface components for the browser and interview windows. It includes classes that provide
a user interface presentation layer onto objects in the proposal data model.

• User Interface Modules: user interface components that allow the user to view or edit a
particular area of the proposal are called Modules. Each module’s classes are contained in a
separate package. The initial release of the SEA will include:
• Exposure Time Calculator: this module currently provides an interface to the Exposure

object and preliminary viewers for Instruments and AstroObjects. The exposure time
calculator is the first of the browser modules to be implemented. Its prototype
implementation has served as a design test-bed. This design description is for the
original prototype release.

• Visual Target Tuner: this module provides an interface for visualizing the target area and
allowing the user to tune the target position and specify orientation constraints.

• Target Selector: this module provides an interface for searching astronomical databases
and retrieving target information. The user can then use that information to choose a
target.

• Instrument Editor: this module provides the browser-style interface for configuring the
instrument. Because it allows the user to edit individual instrument parameters, it is
intended for users who are familiar with the instrument.

• Proposal Summary Editor: this module provides the browser-style interface for editing
proposal summary information.

NGST SEA Design Document

16

• Component Viewer: this module shows an icon view of the contents of an arbitrary
component of the proposal. It is used when no editor exists for a given area of the
proposal.

The design of the modules is intended to allow a data model to be updated either in browser mode
or in interview mode. This allows the user to use the style of update that suits them best and
different parts of the development process. It also provides a framework for allowing the various
components to be developed in parallel and allows a system framework to be prototyped before
all the various viewers are completed.

5.3.2 Science Objects
The science package contains all classes that represent astronomical concepts or data. Every
class in the Proposal data model is such a class. Many of these classes correspond to one of the
specific astronomical concepts described in the Conceptual Model. All of these objects classes
inherit from the root ScienceObject class. The following diagram shows the inheritance tree for
the science package.

5.3.3 Expert System Objects
The design of the Expert System was not complete at the time of this writing. We have decided
to delay delivering an Expert System design until we become more familiar with the Advisor/J

NGST SEA Design Document

17

product. An addendum to this document will be delivered on our Web site
(http://aaadev.gsfc.nasa.gov/NGSTProtos/) within the month. You may also request a hardcopy
by sending e-mail to Jeremy.E.Jones@gsfc.nasa.gov.

5.3.4 User Interface Framework
The main SEA user interface is represented as a proposal browser or interviewer, depending on
the mode selected by the user. Both the proposal browser and the interviewer are windows that
allow the user to modify a proposal. Both windows contain Modules which allow the user to
view and edit a specific area of the proposal. The following diagram shows the classes that
comprise this package and their inheritance relationships.

This diagram shows that the various parts of the proposal each have an editor class that inherits
from Module. Module is a subclass of java.awt.swing.JPanel and can be inserted into any of the
Frame classes shown. An additional design goal was to allow an individual module to be reused
as an applet on a Web page, rather than as part of the SEA. To accomplish this, the
ModuleContext interface was created, and the SEA frames implement this interface. A Module
may be contained in any object that implements the ModuleContext interface, and an applet can
easily do this.

5.3.4.1.1 Proposal Navigation

The proposal browser presents the overall structure of the proposal to the user. This structure
loosely corresponds to the internal structure of the proposal data model, but differences exist
between the internal structure and the structure that should be presented to the user. To separate
these two structures, another data model was created to insulate the user interface from the
underlying proposal data model. ProposalNavigation accomplishes this. Instead of user interface

NGST SEA Design Document

18

objects connecting directly to the Proposal object, they connect to the ProposalNavigation object.
The ProposalNavigation object connects to the Proposal object.

ProposalNavigation contains NavigationComponents that loosely correspond to the separate
ScienceObjects contained within the proposal. Each NavigationComponent contains a
descriptive name and icons. It also knows how to launch the appropriate editor for its underlying
ScienceObjects.

5.3.5 User Interface Modules

5.3.5.1 Exposure Time Calculator
The Exposure Time Calculator (ETC) has served as a testbed for the SEA design. A standalone
prototype of the ETC has been built and is the basis for this design model. It includes prototypes
for items that will later become separate modules, such as the instrument editor and target
selector. The following diagram shows the classes that comprise the ETC.

Proposal ProposalNavigation

User Interface Object

User Interface Object

NGST SEA Design Document

19

5.3.5.2 Visual Target Tuner

The Visual Target Tuner (VTT) allows the user to visualize the target area and tune the target
position. It also allows the user to specify constraints on the possible orientation of the
instrument. The VTT is implemented as a subclass of Module. It mainly consists of a large
canvas area (TargetTunerCanvas) that contains the visualization of the target area. Most of the
VTT implementation is contained within the visualization canvas. The VTT also includes dialogs
that allow access to additional features for manipulating the visualization (ImageChooserFrame,
ImageToolsFrame, and InclusionExclusionFrame). The following diagram shows the high-level
classes in the VTT package.

NGST SEA Design Document

20

5.3.5.3 Target Selector
TargetSelector is a subclass of Module that provides a user interface to various astronomical
databases. The TargetSelector panel contains a set of input fields where the user can specify
search parameters. The user can also select a particular database (NED or SIMBAD) to search, in
which case a new AstroDatabaseClient of the proper type is created. When the user selects the
“Search” button, TargetSelector asks the AstroDatabaseClient to initiate the search. It receives
results through the AstroDatabaseListener interface, which TargetSelector implements. This
allows the search to continue in a separate thread and the results to be delivered asynchronously.
Once the results are received, they are displayed in the TargetTable where the user may select
targets and add them to the list of proposal targets or assign a target to a particular visit.

5.3.5.4 Instrument Editor
The Instrument Editor allows the user to edit individual instrument parameters. It includes a
single class, InstrumentEditor, that is a subclass of Module. InstrumentEditor is an abstract class
that would be implemented for each type of instrument, since each instrument has its own

NGST SEA Design Document

21

parameters and rules for validation of those parameters. Subclasses will display selectable
widgets for each of the parameters contained within the corresponding Instrument object. These
parameters include CCD, filter, binning, gain, and CR split.

5.3.5.5 Proposal Summary Editor

ProposalSummaryEditor is a subclass of Module that allows the user to input summary text
information about the proposal, such as contact information for the General Observer (GO) and a
textual explanation of the proposal goals. These items are shown as simple text fields that the
user can edit.

5.3.5.6 Component Viewer
The design of the Component Viewer is quite simple. ComponentViewer is a subclass of
Module, and since Module is a subclass of java.awt.JPanel, the component viewer already
contains the necessary drawing area for rendering icons. ComponentViewer includes a reference
to the NavigationComponent that it represents. It draws the contents of the
NavigationComponent using the icons stored within the NavigationComponent’s children. It also
provides a text entry field where the user may rename the Proposal data object specified by the
component. ComponentViewer traps mouse events on the drawing area to determine if the user
double-clicks on an icon. If so, ComponentViewer asks its ModuleContext to launch the
appropriate Module for the selected icon.

5.4 Design Class Model
This section describes the most important SEA packages in
detail. The important classes in a package are described,
along with diagrams illustrating the principle operations,
data members, and relationships to other classes.

5.4.1 Science Package

5.4.1.1 ScienceObject
ScienceObject is the parent class for all of the scientific
object classes. It provides common functionality for all the
classes in the science data model. This includes:
• maintaining common properties such as name, creation
date, last modification date, and annotation text
• providing support for property change handling,
• support for managing member (child) objects

Support for property change handling is integrated with
support for managing child objects. If a subclass of
ScienceObject (say, Instrument) wants to maintain a child
object (say Detector), it should avoid managing the child
object itself, and instead register the child by use of
ScienceObject's addChild(childobject) method. Once
added, the ScienceObject will handle such tasks as

NGST SEA Design Document

22

persistence of the instance's children, propagating change information to and from children, and
ensuring that children are properly handled when replicating the object.

NGST SEA Design Document

23

5.4.1.2 Instrument

An instrument is responsible for
information and actions related to a
specific instrument within an observatory.
Each instrument has a list of detectors,
knows its currently selected detector, and
has additional properties such as:
• CRSplit, the number of independent
images that would be taken with the
current configuration.
• Binning, the aggregation of pixels
within the instrument's detectors.

Instrument includes functionality that
should be common to all instruments.
However, it is expected that a subclass of
Instrument will be needed for each
specific instrument supported (i.e.
InstrumentACS would extend Instrument).
These subclasses will provide support for
parameters unique to their specific
instrument, and might override default
behavior.

NGST SEA Design Document

24

5.4.1.2.1 InstrumentSTIS

The InstrumentSTIS is a subclass of
Instrument to handle the STIS instrument
within the Hubble Space Telescope. It has no
additional functionality beyond Instrument,
but does contain three detectors each of
which has a list of filters.

5.4.1.3 Filter

Filter contains information related to a filter within an instrument.
Currently this information is limited to the properties of width, height,
and a descriptive name. Each of these properties is read-only except
when the filter is defined.

NGST SEA Design Document

25

5.4.1.4 Detector

Detector contains information and
knowledge pertaining to an instrument's
detector. Currently, a detector contains
a list of valid filters and the currently
selected filter. It also contains the
following read-only properties (defined
when the detector is created):
• BrightLimit: the maximum number
of photons the detector can accumulate
in a single pixel across multiple
"splits".
• BrightLimitOneImage: the
maximum number of photons the
detector can accumulate in a single
pixel in a single image or split.
• DarkCurrent: the amount of dark
current inherent in the detector.
• PixelSize: the size of a single pixel
in the detector (assumed to be square).
• PlateScale: the platescale of the
detector.
• PointSourceFunction: the PSF of
the detector. NOTE: while this is
currently a single value, it may grow in
the future to be a true function based on
one or more other parameters.
• ReadNoiseFactor.
• WidthInPixels: the width of the
detector in pixels (assumes a square
detector). Note that Height is likely to
be added shortly.

5.4.1.5 Coo
rdinates

Coordinates is
a class that
represents a
position in
space. It

provides

NGST SEA Design Document

26

support for representing position as a right ascension and declination pair. It includes the ability
to set the equinox and coordinate system, and to convert between two equinoxes or coordinate
systems.

5.4.1.6 AstroObject
AstroObject represents a single
astronomical object in space. This
class is designed to contain
information relevant to an
astronomical object itself and is
specifically not designed to
incorporate any assumptions
about an object being used to
observe the AstroObject.
An AstroObject has a position,
represented by a Coordinates
object, and a morphology that
defines the shape and size of the
object.
In addition, AstroObject contains
a spectrum and normalization
information for relating the
spectral model to the specific
brightness of the object.
The object also has the following
properties:
• Object Type
• Redshift
• Redlaw
• Reddening
• Source
• Bibliographic references

5.4.1.7 AstroOffset

NGST SEA Design Document

27

AstroOffset is used to indicate a target that is
an offset relative to some primary target. It
contains the offset coordinates and a
reference to the primary target.

5.4.1.8 Morphology

Morphology contains information about the shape and size of an
AstroObject. For example, a galaxy is classified into many different
types of shapes, depending on whether it is spiral or elliptical, the type
of spiral, etc. Morphology includes methods for retrieving and setting
the shape and as a morphology classification string. It also provides
support for retrieving the size of the object.

NGST SEA Design Document

28

5.4.1.9 Spectrum

Spectrum contains
information and
knowledge about the
spectral emission
characteristics of an
astronomical object. The
covering Spectrum abstract
class details the methods
that all subclasses must
support.
Currently, the Spectrum
class is only detailed as
necessary to support
SynPhot based
calculations.

NGST SEA Design Document

29

5.4.1.9.1 SpectrumFlat
This subclass has no additional parameters. It returns a constant flux regardless of wavelength.

5.4.1.9.2 SpectrumPowerLaw
The Power-Law spectrum models a spectrum that meets the Power-Law model. It has two new properties:
Alpha value and an Index.

5.4.1.9.3 SpectrumBlackBody
SpectrumBlackBody assumes a spectrum that emits as a black body of a specified temperature. It contains
an additional property of Temperature.

NGST SEA Design Document

30

5.4.1.9.4 SpectrumDataFile

Three different subclasses of
SpectrumDataFile allow a spectrum to be
defined by a list of keyword values. This
style is only supported when the SynPhot
interface is used.
The SpectrumDataFile subclass contains a
list of Spectrum names and matching
references to "table" files accessible by a
host SynPhot process.
Currently the list of table files is hard-coded
into each sub-class' constructor. The intent
of this class is that this reference list will be
maintained in a separate data file. When
this step is implemented, the three
subclasses, SpectrumHST,
SpectrumKurucz, and SpectrumNonStellar
will likely become instances rather than
subclasses of SpectrumDataFile with a
reference to the data file name passed into
the constructor.

NGST SEA Design Document

31

5.4.1.10 Normalizer

This class is used to maintain
information about adjusting a
Spectrum's brightness to a specified
base value. Currently, the Normalizer
class is sub-classed into
NormalizerFlux and
NormalizerMagnitude. The difference
between the two classes is not in the
role, but in their units.
Each subclass contains a base
wavelength and a brightness factor. A
spectrum will be normalized by
adjusting the intensity of its spectral
model so that at the specified
Normalizer wavelength, the emission
has the specified intensity.
The distinction between the two
subclasses is in their units.
NormalizerFlux contains a specific
wavelength specified in Angstroms
and a base Flux. While
NormalizerMagnitude contains a string
reference to a standard wavelength

"band" (for example "V" for Visible) and a Magnitude factor for the spectrum in that band.
It is likely that once formulae are obtain to convert between the two systems, that the subclasses
will be merged into a single class.

5.4.1.10.1 NormalizerWavelength

This class is related to the primary Normalizer class. While NormalizerFlux and
NormalizerMagnitude adjust the spectrum's intensity to a base point, the NormalizerWavelength
would adjust the Spectrum's wavelengths. This would be used to account for redshifts and
velocity considerations.

NGST SEA Design Document

32

5.4.1.11 Observatory

Observatory contains attributes that affect a telescope’s detection
characteristics but are not properties of the instrument or the
astronomical object being observed.
The contents of this class are likely to be dependent upon the overall
telescope and observatory, thus subclasses of Observatory will be
necessary.
Currently, two attributes are maintained in this class. These are
currently tailored to provide parameters to SynPhot-based calculations.
These two parameters are EarthShine and ZodiacalLight. EarthShine
predicts the amount of Earth-based emissions that will interact with an
exposure. ZodiacalLight predicts the amount of background emissions
deflected from the sun.

5.4.1.12 Visit

A Visit is a group of exposures. It contains
the primary target and a set of exposures.
Observatory parameters are also contained
within Visit. Once the Visit Planner is
incorporated into the SEA design,
information about how the exposures are
ordered and validated will be added to the
Visit class.

NGST SEA Design Document

33

5.4.1.13 Exposure

The exposure maintains
information specific to
making single exposure. It
contains an Instrument and an
AstroOffset. It is responsible
for having the knowledge
necessary to calculate and
report on the various "counts"
and "fluxes" associated with
an exposure.
It is an abstract class,
requiring its subclasses to
implement two methods:
calcBackground to calculate
Background flux, and
calcSourcerate to calculate
the flux received from the
source target.
With that information, the
exposure currently calculates
several properties containing
rates at which photons are
received from various
components of exposure.
Given a Signal-to-Noise
Ratio (SNR) it will also
calculate the exposure time
(in seconds) necessary to
reach that SNR. Similarly,
the SNR would be achieved
for an exposure of a specified
amount of time.

NGST SEA Design Document

34

5.4.1.14 ExposureSynPhot

ExposureSynPhot is a subclass of
Exposure that adds methods for
calculating Background and
Source fluxes by making calls to a
host machine containing the
STSDAS routine, SynPhot.
It is currently the only executable
implementation of an Exposure
subclass.
While the default host server is
'garnet.stsci.edu', the class has the
ability to change the host server,
provided the specified server has
both SynPhot installed and a
required "CGI-script" to provide
an interface to the client machine.

5.4.2 User Interface
Framework

5.4.2.1 ModuleContext

ModuleC
ontext is

an
interface

that must
be

impleme
nted by

any
object

that wishes to contain a Module. It defines methods for accessing a standard set of services that
are provided to Modules. These include setting the title of the module and setting message text
that appears in a status bar. In addition, ModuleContext defines a method for returning a
reference to a menu bar. Since a Module is a Panel, it may not have a menu bar. Instead, a
Module may call this method to get a reference to its container’s menu bar and may add its own

NGST SEA Design Document

35

menus to that menu bar. Objects that do not have menu bars may return null from this method, in
which case the Module must setup its menus elsewhere (as a popup menu, perhaps).

5.4.2.2 BrowserFrame

BrowserFrame is the main window in the
SEA. It represents a single proposal when
in Proposal Browser mode. BrowserFrame
contains several user interface objects that
allow the user to interact with the proposal:
• A ProposalTree displays a view of
the overall proposal. The user can select
items from this tree.
• A module allows the user to view
and edit the currently selected item in the
proposal tree.
• A menu bar provides access to most
functionality. It may contain menus added
by the currently selected module.
• Navigation buttons maintain a
history of the user’s selections in the
proposal tree and allow the user to move

backward or forward in that history.
• A help button provides access to the context-sensitive help feature.
• Title labels display the name of the proposal and the name of the currently selected

module.
• A status bar displays status messages.

BrowserFrame is responsible for ownership of the Proposal data object. If the user switches to
Interview mode, however, the BrowserFrame is closed and the Proposal data object is passed to a
new InterviewFrame. BrowserFrame should only receive updates from the Proposal object
through PropertyChange events. BrowserFrame should never modify the Proposal. It is the
responsibility of Modules to do this.

5.4.2.3 ModuleFrame

When the user chooses to open a module in its
own separate window, a ModuleFrame is
created and the new Module is passed to it.
Like BrowserFrame, ModuleFrame is a
window that implements ModuleContext.
Unlike BrowserFrame, however, ModuleFrame
does not contain a proposal tree, nor does it
own the Proposal object. ModuleFrame is
essentially a container for a Module and the
objects necessary to support the
ModuleContext features. It should never need

to access the Proposal or ProposalNavigation objects.

NGST SEA Design Document

36

5.4.2.4 InterviewFrame

InterviewFrame is the main
window used when in Interview
mode. It may contain modules,
and thus implements the
ModuleContext interface. It
communicates with the expert
system, which formulates
questions and adds them to the
InterviewFrame. The
InterviewFrame controls the
navigation between sets of
questions that correspond to areas
of the proposal. The questions
themselves, however, are
managed by the expert system.
The InterviewFrame contains
several user interface objects
including:

• A summary list of the steps required to complete the proposal and the current status of
those steps.

• A panel that contains the set of questions for the current step in the proposal.

• Navigation buttons similar to those found on a Microsoft Windows Wizard interface.
These allow the user to go backward or forward in the list of steps.

• A menu bar provides access to most functionality. It may contain menus added by a
module if one exists in the question panel.

• A help button provides access to the context-sensitive help feature.
• A status bar displays status messages.

5.4.2.5 LaunchApplet

LaunchApplet is a simple applet that starts the SEA. It contains a single
button that, when pressed, opens a BrowserFrame window. This may be
done multiple times if the user wishes to open multiple proposals at
once. LaunchApplet will be the initial access point for the SEA when

run from a Web page. LaunchApplet keeps a reference to its BrowserFrames and dereferences
them when it is dereferenced. In the future, LaunchApplet may display a list of existing
proposals and allow the user to open specific proposals, delete proposals, etc.

5.4.2.6 Module

Module is the abstract root class for all proposal
editors and viewers. It is a subclass of
java.awt.swing.JPanel and can be placed in any
container that implements the ModuleContext
interface. Module contains a reference to its

NGST SEA Design Document

37

ModuleContext. It does not contain any references to ScienceObjects. It is the responsibility of
Module subclasses to define those references, and to subscribe to ScienceObject PropertyChange
events.

The Module subclasses will be described in a separate section.

5.4.2.7 ModuleFactory
ModuleFactory is a standard means by which
containers get instances of Modules when new
Modules are needed. It contains a single static
method, createModule(), that takes a Class object as
its argument. It returns an instance of the Module
subclass represented by the Class argument.
ModuleFactory retains Module instances and reuses
them whenever possible instead of creating a new one
each time. This is important for performance since the

user will typically be switching between Modules often, and Modules are expensive to create.

5.4.2.8 ProposalNavigation

ProposalNavigation is a container
for NavigationComponent objects.
It provides access to the
NavigationComponent tree. It is
also the source of
NavigationComponentEvents. It
includes methods for adding and
removing listeners for these events,
which can be triggered when any of
the navigation components is
modified, added, or removed.

Typically a single ProposalNavigation instance will be created for each Proposal instance. When
created, ProposalNavigation is given a Proposal instance as an argument to its constructor.
ProposalNavigation is responsible for creating its NavigationComponents in its constructor.

NGST SEA Design Document

38

5.4.2.9 NavigationComponent

A NavigationComponent represents a specific area of the proposal.
For example, a NavigationComponent could represent an
Exposure, while many items within the Exposure such as a Target,
Exposure Time, and Instrument, would also have a corresponding
NavigationComponent. NavigationComponent is responsible for
representing a proposal item to the user. It contains the following
properties:
• A descriptive name of the proposal area represented.
• Icons that represent the proposal area.
• A reference to its parent NavigationComponent.
• References to its child NavigationComponents.
In addition, a NavigationComponent knows how to launch the
Module subclass that is used for viewing or editing its particular
proposal area. This may be as simple as knowing the Module
Class type, in which case it requests a new instance from
ModuleFactory and adds it to the ModuleContext. Subclasses
could, however, provide other ways of launching editors by
overriding the launchEditor() method.
A NavigationComponent contains icons that represent the proposal
area. getIcon() takes an argument which indicates the type of icon

desired. This argument is the same as that used in java.beans.BeanInfo and allows icons to be
specified in color or black and white, and 16x16 or 32x32 pixels in size. The default
implementation of getIcon returns an icon specific to the type of Module represented. It is
expected that subclasses of NavigationComponent will further define the icon image by the type
of ScienceObject used in the Module (for example, with a Target, different icons could be
provided for Galaxy and Star).

5.4.2.10 NavigationComponentEvent

A NavigationComponentEvent is triggered
whenever a NavigationComponent is modified,
added, or removed.
NavigationComponentEvent contains a
reference to the NavigationComponent that has
changed. NavigationComponentEvents are
initiated by the ProposalNavigation class.

5.4.2.11 NavigationComponentListener

Any class that is interested in when the components of a
ProposalNavigation change should implement the
NavigationComponentListener interface. It contains
separate methods that are called when a component is
added, modified, or removed. These actions are triggered

NGST SEA Design Document

39

when the user modifies the proposal. For example, adding a new exposure causes new
NavigationComponents to be added to the ProposalNavigation object. This listener allows
outside objects to be notified of these changes.

5.4.2.12 NavigationTree
A NavigationTree is a java.awt.swing.JTree user interface
object that displays the contents of a proposal. Each node
in the NavigationTree is a NavigationComponent.
NavigationTree implements the
NavigationComponentListener interface so that it is
notified when it needs to redraw its contents.
NavigationTree informs its parent when the user clicks on
an item in the tree.
BrowserFrame contains a NavigationTree object. It

responds to selections in the tree by asking the selected NavigationComponent to launch its
corresponding editor, which causes a new Module to be placed in the BrowserFrame’s Module
area.
NavigationTree provides only a view of the ProposalNavigation and its contents. It should not
modify those contents in any way.

5.4.3 Visual Target Tuner

The following class model is for the initial release of the Visual Target Tuner (VTT). It will
allow the user to view a FITS image of the target area, tune the target position, and specify
orientation constraints by selecting inclusion and exclusion points. This design does not support
the full VTT release, which will include features such as the ability to simulate diffraction spikes
and CCD bleeding. These features will be added in the next major SEA release.

NGST SEA Design Document

40

5.4.3.1 TargetTuner

TargetTuner is a subclass of
Module that contains the VTT user
interface. It contains the following
user interface components:

• The TargetTunerCanvas,
which displays the visualization of
the target area.

• A CoordinatesPanel which
displays the target position.

• A CoordinatesPanel which
displays the currently selected
position.

• A ToolPalette that contains
the available tools for use on the
visualization area.

In addition to providing the user interface, TargetTuner is responsible for maintaining references
and listening for changes to the AstroTarget and Constraints objects being modified. TargetTuner
also communicates with its ModuleContext by adding menus to the context’s menu bar and
providing its module name and status messages.

5.4.3.2 ImageCanvas

ImageCanvas is a subclass of java.awt.Canvas. It provides the ability
to draw multiple images in a scrollable canvas area. It also provides
the ability to move the viewport to an arbitrary position and to zoom
the viewport to less than or greater than normal magnification. Images
are assumed to be java.awt.Images and coordinates are assumed to be
in pixels. ImageCanvas does not provide any astronomical support. It
is intended as a utility class that does not require any other classes other
than the standard Java classes.

5.4.3.3 AstroImageCanvas

NGST SEA Design Document

41

AstroImageCanvas is a subclass of ImageCanvas that adds
astronomical support. It provides support for setting and getting
position as an astronomical Coordinates object and automatically
translates Coordinates to pixels. It does not provide support for any
new drawing functionality. It is intended as a generic class that might
be used for many different astronomical applications.

5.4.3.4 TargetTunerCanvas

TargetTunerCanvas is a
subclass of
AstroImageCanvas that
adds support for drawing
the other visualization
components of the Target
Tuner. Callers may toggle
drawing of the instrument
aperture, orientation rings,
and inclusion/exclusion
constraints. It is expected
that TargetTunerCanvas
will also supply support
for the selection of objects
within the canvas and for
interactive dragging of the
target selection.

5.4.3.5 ImageChooserFrame

ImageChooserFrame allows the user
to select one or more FITS images
for inclusion in the visualization. It
provides the ability to search
astronomical databases for images
with positions relative to the current

NGST SEA Design Document

42

target. ImageChooserFrame is a separate window that is accessible from the TargetTuner menus.

5.4.3.6 ImageToolsFrame

ImageToolsFrame allows the user to
interactively manipulate the FITS images
contained within the visualization. It provides
a user interface to all the features of the
ImageManipulator class. The modified images
may be saved for later recall.

5.4.3.7 InclusionExclusionFrame

InclusionExclusionFrame is a separate
window that displays the current set of
inclusion and exclusion points as a table.
The user may remove items from the table.
The user may continue to work with the
visualization while this window remains
open, in which case the table is
automatically updated whenever the user
changes the inclusion or exclusion points in

the visualization. It is also expected that this window will contain summary information about
the effects of the current constraints on the proposal, i.e. the percent of orientations that are valid
with the current constraints, and some representation of the schedulability of the proposal given
these constraints.

5.4.3.8 ToolPalette

ToolPalette is a simple user interface item that contains a set of toolbar
buttons. These buttons represent the functions that the user may
perform on the visualization. These functions include specifying
inclusion and exclusion points or regions, panning and zooming the

visualization, and retrieving information about objects within the visualization. By selecting a
function in the ToolPalette, the initiates that operation. The ToolPalette only provides initial
access to these functions and does not actually perform them.

NGST SEA Design Document

43

5.4.3.9 ImageManipulator

ImageManipulator is a utility class that takes a set of images as an
argument and allows various operations to be performed on the
images. These operations include setting an image to its negative,
adjusting the image brightness and contrast, and modifying the
image’s color table.

5.4.3.10 FitsImage

FitsImage is a subclass of java.awt.Image that implements the features
of Image as a FITS image file. It can be used wherever a
java.awt.Image is required, including in the ImageCanvas class.
FitsImage uses existing code from Thomas McGlynn of the NASA
Goddard SkyView project. This existing code provides support for
reading and writing of FITS images. The FitsImage class translates that
data into an Image object.

5.4.3.11 CoordinatesPanel

CoordinatesPanel is a java.awt.swing.JPanel that includes text entry
fields for the RA and Declination of an astronomical position. It
provides standard support for coordinate input, including validation,
setting the equinox, and setting the coordinate system. It is expected
that this class will live in a utility package rather than the TargetTuner
package since it is likely to be used in other areas of the system.

5.5 Class Interaction Diagrams
This section contains a series of collaboration diagrams that illustrate the following sequence of
events:
• User starts a SEA browser window.
• User opens an existing proposal from a file.
• User selects an Exposure Time in the proposal tree, causing the Exposure Time

Calculator to open.
• Using the Exposure Time Calculator, the user sets a new value for the exposure time.
• The user saves the modified proposal to disk.

NGST SEA Design Document

44

5.5.1 Diagram 1: Starting a SEA browser window

LaunchApplet BrowserFrameetcModule

2: createBrowser

user clicks on
"Open Browser"
button.

3: create(this)

4: open1: actionPerformed

This diagram demonstrates how a browser window is first created. The user selects a button on
the LaunchApplet, which causes the LaunchApplet to create an instance of BrowserFrame and
open it. At that point, the BrowserFrame opens with a new, untitled proposal.

5.5.2 Diagram 2: Opening an existing proposal

BrowserFrame(user)

JFileChooser

user selects "Open
Proposal" from
brow ser menu.

6: openProposal

ObjectInputStream

12: setProposal(loadedProposal)

13: setNavigation(new ProposalNavigation(loadedProposal))

user selects
filename from
chooser.

uses serialization. All
objects contained w ithin
Proposal are properly
reconstructed.

7: create(this)

8: show Dialog

9: getSelectedFile: filename

10: create(filename)

11: readObject: loadedProposal

5: actionPerformed

This diagram shows how a Proposal object is loaded from disk. Once the user selects the “Open
Proposal” option from the browser menu, a file chooser is created which prompts the user for the
filename. Once the filename has been chosen, an object stream is created, from which the
proposal object is extracted. The Java seralization mechanism is used to read and write proposal
objects to disk. All of the objects contained within the Proposal object are automatically
reconstructed. Finally, the browser sets its current proposal to the newly loaded Proposal and
creates a new ProposalNavigation instance from the new Proposal. Setting the current proposal
causes user interface items such as the NavigationTree to be refreshed with the contents of the
new Proposal.

NGST SEA Design Document

45

5.5.3 Diagram 3: Selecting an exposure time in the proposal tree

NavigationTreeetcModule

user selects
"Exposure
Time" node in
tree.

NavigationComponent

ModuleFactory

etcModule : Module

BrowserFrame

19: addComponent(etcModule)

18: setContext(this)

14: valueChanged 15: launchEditor(getContext())

16: createModule(moduleClassType() : etcModule)

17: setCurrentModule(etcModule)

This diagram shows how the Exposure Time Calculator module becomes activated when the user
selects an exposure time in the proposal tree. These events are true of all modules and all items in
the proposal tree. The NavigationTree contains NavigationComponents, one of which represents
an exposure time. When the user selects an item in the tree, they are selecting a
NavigationComponent. The selection causes a new module to be created and added to the
BrowserFrame. The Module is added to the BrowserFrame via the ModuleContext interface,
which BrowserFrame implements.

5.5.4 Diagram 4: Setting a new value for the exposure time

etcModule Exposure

user has set a new
exposure time in the
ETC. This causes the
follow ing to occur.

21: pTime = new Time

22: firePropertyChange(oldTime, new Time)

Visit Proposal

ProposalNavigation

26: fireComponentChange

NavigationComponentEvent NavigationTree

29: redraw Component(event.getComponent())

NavigationTree is a
NavigationComponentListener

20: setExposureTime(new Time) 23: propertyChange 24: propertyChange

25: propertyChange

27: create()
28: componentModified(event)

Once the user modifies any value in the proposal, that change is automatically propagated to the
rest of the proposal and to objects outside the proposal. This diagram illustrates that concept

NGST SEA Design Document

46

using the exposure time as an example. Setting the exposure time in the ETC causes the new
value to be passed to the Exposure object, which modifies the value and fires a
PropertyChangeEvent. That event is propagated to all appropriate listeners, which includes the
parent object of Exposure: Visit. Visit passes the event to its parent, Proposal, which passes it to
its listeners. ProposalNavigation always listens to all Proposal changes so that it can notify user
interface components. It fires a NavigationComponentEvent, indicating that the contents of the
Exposure Time component have changed. Since the NavigationTree is listening for those events,
it receives the event and redraws its contents.

5.5.5 Diagram 5: Saving the proposal to disk

(user) BrowserFrame

user selects
"Save" from the
brow ser menu.

31: saveProposal

ObjectOutputStream

30: actionPerformed 32: create(pProposal.getFilename())

33: w riteObject(pProposal) 34: close

Saving a proposal to disk is a simple operation. Since serialization is used to store the Proposal
and its subobjects, we simply open an output stream with the specified filename, write the
Proposal object to the stream, then close the stream.

NGST SEA Design Document

47

6 Java Implementation Notes

6.1 Development Tools

6.1.1 Integrated Development Tool: Visual Café
The SEA team has chosen Symantec’s Visual Café for Java 2.0 as the integrated development
environment. Other IDEs were considered such as Borland’s JBuilder and Cosmo Software’s
Cosmo Code. Visual Café is currently the only second-generation Java IDE. This gave Visual
Café an advantage in robustness and completeness of features, while remaining intuitive and easy
to use.

6.1.2 Configuration Management: Visual SourceSafe
Microsoft’s Visual SourceSafe was chosen as our configuration management tool. It provides an
easy-to-use graphical interface, works transparently over the Microsoft network protocol, and
includes all the features that we expect to need from a configuration management tool.

6.1.3 Expert System Engine: Advisor/J
Neuron Data’s Advisor/J was chosen as our expert system engine. Advisor/J fits well into our
development environment because it is entirely written in Java. This will make it much easier to
incorporate expert system technology into the SEA. In addition, Advisor/J includes an integrated
development environment for building rules and managing the rule base.

6.2 Additions/Exemptions to the Java Style Guide
The (formerly) Code 522 Java Style Guide will be used for development of the SEA. While most
of the guide meets our needs, the following changes will be adopted:

6.2.1 Property names
If a field represents a JavaBean property, begin the field name with the letter “p”, then conform to
the variable format. All other fields will continue to use the existing name formats.

6.3 Security Management

6.3.1 User security

The initial release of the SEA will not have user authentication or any other mode of user
security. This is partly due to the fact that users want to be able to save their proposal as a file
that can be transmitted to colleagues. If proposals were stored in a secure database, this would
not be possible. However, we are aware of the sensitivity issues involved with proposals and are
considering instituting some sort of authentication. Digitally signing the proposal file is one
option. Another would be to encrypt the file. We will revisit this issue after the prototype
release.

NGST SEA Design Document

48

6.3.2 Applet security

Many requested features, such as the ability to save the proposal to a local disk, are not possible
in an applet due to the Web browser’s security model. We must find a way to overcome this
limitation. The most obvious possibility is to digitally sign the SEA distribution file. This will
enable the SEA applet to access secure features in the Web browser, such as saving to a local
disk. We are investigating incorporating digital signing into the prototype release.

6.4 Deployment notes/comments

The SEA will be deployed both as an applet and as an application. In the case of an applet, a web
page will be setup where the user can easily access the tool. Application deployment, however, is
a little more problematic. Certainly we will deploy the tool as a JAR file, but other questions
remain: Should we deploy archives with the JRE embedded, or should we assume that they
already have a proper virtual machine? Should we use an automatic download mechanism such
as Netscape’ SmartUpdate, or should we just allow the user to download the JAR file and run it?
The initial release of the SEA application will most likely be deployed as a JAR file that can be
downloaded, along with instructions on how to run it.

6.5 Location of implementation files
We plan to maintain up-to-date JavaDoc files for our implementation, as well as source files and
demonstrations. These files may be obtained at http://aaadev.gsfc.nasa.gov/NGSTProtos/.

NGST SEA Design Document

49

